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1. Introduction
Artificial intelligence (AI) technologies are beco-
ming increasingly important for the design of hu-
man-computer interactions and user experiences. 
Consequently, the topic must be integrated into 
design education and the design curriculum [8]. 
For a meaningful and informed engagement with 
AI technologies, new challenges arise for desig-
ners [20]. These include but are not limited to the 
following: 1) Designers often lack an understanding 
of a given AI technology‘s technical capabilities 
and restrictions. This makes it difficult for them to 
imagine feasible AI solutions for a specific prob-
lem [20]; 2) The lack of technical knowledge can 
cause designers to struggle to conceptualize new 
and creative ways of using AI technologies. As a 
result, design-led innovations in the field of machi-
ne learning (ML) are still rare [4]. 3) The complexity 
and technical depth of the technology may pose 

obstacles for designers to prototype their AI-based 
ideas [20] and to actively engage with the techno-
logy in iterative creative processes.

With our teaching format, we approached these 
challenges and contributed to equipping design 
students with the necessary intuition that prepares 
them to create meaningful, creative, and technically 
feasible AI-based systems and user experiences 
[8]. Our workshop concept focused on a specific 
subcategory of AI technology, the processing and 
classification of sensor data using ML, and its 
potential for interaction design. ML models are 
increasingly optimized to consume less energy and 
require less memory. Hardware capable of run-
ning ML models, such as microcontrollers, is also 
becoming miniaturized, more affordable, and more 
powerful. This technical progress offers rapidly 
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growing opportunities for the design and develop-
ment of new, engaging, and customizable real-time 
interactions.
In this study, we present our teaching format, which 
aims to introduce students to the basics of ML and 
sensor data in a playful way and enable active ex-
ploration of the technology and its potential for the 
development of novel AI-based interactions. The 
format involved two parts: 1) a role play that allows 
low-barrier access to understanding the techni-
cal capabilities and restrictions of the technology 
and 2) hands-on engagement with the technology 
using readymade sensing and acting modules. We 
describe our approach in detail and reflect on the 
implementation of the activities. We also provide 
teaching materials and access to the code.

2. Related Work
Designers are experienced in transforming known 
technologies into novel and valuable products or 
services [19]. Regarding new technologies, part 
of the research in the Human-Computer-Inter-
action (HCI) community focuses on making a 
particular technology or medium more accessible 
to designers. This includes approaches that frame 
emerging technologies as design material, such as 
„software as design material“ [15], „electronics as 
material“ [2], „machine learning as design material“ 
[4], „artificial intelligence as design material“ [11], 
and „data as design material“ [13]. The characteri-
zation of a technology as a design material implies 
design-driven approaches to engaging with the 
technology, such as the act of „reflection in action“ 
[16], in which the ideation process occurs while 
working with the material. Engaging in reflective 
processes during the hands-on interaction with the 
material aims to facilitate the development of new, 
innovative applications. However, according to Yang 
[19], this process requires designers to have a tacit 
understanding of the materials they are working 
with. With new technology, this creative process 
happens less easily because designers lack at-hand 
knowledge of the material‘s capabilities. Therefore, 
designers must become familiar with emerging 
technologies to innovate [19]. Not being able to 
implement and test an idea significantly limits ref-
lection in action. This also applies to technologies, 
especially those as complex as aspects of AI. As 
Dove et al. [4] summarize, „ML is a more difficult 
design material to work with.“

Recently, the HCI community has been increa-
singly researching how to facilitate the design and 
innovation of human-AI interactions [20]. Among 

others, the following three approaches are discus-
sed: 1) The technical literacy of designers must be 
improved to understand AI technologies‘ capabili-
ties [8,20]. This also includes the development of 
a precise language for communicating about AI to-
pics in order to develop a mutual understanding in 
the increasing collaboration among designers, data 
scientists, and AI experts [9]. 2) Designers must be 
able to engage with the technology in a hands-on 
way to support ideation [6,17,20]. 3) As data plays 
an essential role in understanding and developing 
AI-based interactions and applications, it is crucial 
for designers working with and designing AI tech-
nologies to acquire the necessary data literacy[19] 
and engage with data in a meaningful way during 
the design process [13].

In addition to textbooks, several resources are 
available online that can support designers in 
developing the necessary technical literacy in the 
context of AI, such as online courses and resource 
collections [1,7,21–23]. However, these sources are 
usually very extensive, require much time to work 
on, and are often difficult to integrate into teaching 
formats. No-code tools such as Teachable Machine 
[24], Tiny Motion Trainer [25], and Wekinator [5] 
facilitate easily accessible, hands-on engagement 
with AI technology. In electronics and physical 
computing, physical toolkits such as Blokdots [3] 
make hardware components readily available to 
designers, allowing them to quickly and efficiently 
implement and test ideas in prototypes. All these 
tools often work by reducing the complexity of a 
technology to make it more accessible in terms of 
technical knowledge and time. This makes them 
well suited for use in teaching per se. However, they 
are often limited in their capabilities for implemen-
ting complex ideas. Professional tools such as the 
Edge Impulse [26] software platform offer exten-
sive capabilities for realizing and testing ideas but 
require a certain amount of prior knowledge.

Concerning AI in design education, few examples 
can be found of providing the right amount of tech-
nical knowledge and enabling sufficient hands-on 
engagement with the technology in a time-limited 
setting such as a workshop. One example that does 
not explicitly focus on AI technologies but on the 
use and potential of sensor data in the design pro-
cess is the teaching format by Lallemand et al. [14]. 
They propose a practice-based teaching activity 
that introduces interaction design students to the 
potential of sensors for user research and ideation 
without the need for technical knowledge.
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In summary, designers must be prepared for new 
challenges in a design-led approach to developing 
novel and meaningful AI-based systems. Several 
resources and tools exist that can be used in tea-
ching. However, there is still a lack of examples and 
reports on how implementation in design education 
can work in practice. We aim to contribute to this 
with our teaching format.

3. Teaching Format
Based on the challenges that designers face when 
using AI technology in their design processes, our 
teaching format addressed the following learning 
objectives: 1) It should expand students‘ technical 
knowledge for them to understand the capabilities 
and limitations of the given AI technology—in our 
specific case, the processing and classification 
of sensor data. As data is crucial for developing 
AI-based interactions and applications, students 
should also develop the necessary data compe-
tency. 2) Students should be introduced to the 
relevant technical vocabulary to enable them to 
work in interdisciplinary teams with data scientists 
and AI experts. 3) It should allow them to actively 
engage with the technology to enter into creative 
and reflective ideation processes that facilitate the 
development of new, innovative applications. This 
includes providing them the necessary skills to 
implement and test their ideas as prototypes.

We held the teaching format (referred to as a 
„workshop“) twice, with different groups of stu-
dents: once at the HfG Schwäbisch Gmünd and 
once at the Köln International School of Design 
(KISD). In the first run, we planned the workshop 
for three consecutive days. This duration proved too 
short, so we scheduled the second implementation 
for four days. Our description of the format refers to 
the second implementation.

In the following, we provide a short summary of the 
procedure. In the subsequent sections (3.1-3.3), we 
describe the individual parts and components in 
detail and provide in-depth information on the pro-
cess, organization, and technical implementation.

Our teaching format was divided into two parts (fig 
1): For low-barrier access to the topic, the first part 
emphasized a playful introduction to the techni-
cal capabilities and limitations of the technology 
without requiring technical skills. The students 
engaged in a role play in which they embodied the 
different components of a sensor-based AI system 
to gain a basic understanding of the technology. 
This part of our teaching format was inspired by 
the approach of Lallemand et al. [14]. Initiated by 
the role play, we delved into the basics of ML and 
examined the fundamentals of neural networks 
and their functional principles. The first part of the 
workshop lasted about four hours.

The goal of the second workshop part was to acti-
vely engage with the technology as a design mate-
rial to explore its potential for new forms of interac-
tion beyond simply extrapolating known use cases. 
To this end, the students received a project briefing 
focused on exploratory rather than problem-solving 
approaches. They were introduced to a tool that 
enables the code-free training of ML models and 
their deployment on microcontrollers. At the same 
time, the second part of the workshop addressed 
key questions about training a model with custom 
data, the steps necessary for data collection and 
preparation, crucial parameters in the training pro-
cess, and strategies for model improvement. The 
goal of this second part was to run an individually 
trained model on a microcontroller and present the 
developed interactions in a group performance. 
This part of the workshop was held over three and a 

Figure 1: Overview of the workshop schedule, including the two parts and the associated activities.



4 of 11

half days. The material, code files, and a short video 
documentation of the workshop can be found in the 
project repository: https://gitlab.rlp.net/kitegg/
public/making-nonsense.

3.1. Workshop Part 1: Acting Out AI Systems
In the first part of the workshop, students role-play-
ed the components of a sensor-based AI system. 
The aim was to develop an understanding of sensor 
data and the basic principles of data collection, pro-
cessing, and interpretation by ML systems. To this 
end, the students playfully explored which types 
of data can be captured by the given sensors, how 
this data represents their environment, and how 
this information can be used to conclude specific 
events. For the role play, the group was divided 
into subgroups with different roles: two actors, 
two observers, and several groups of „intelligent 
systems,“ each consisting of a „human sensor“ and 
two people representing the algorithm (fig. 2).

Each group picked a sensor from a predefined 
group of sensors. The following sensors were avai-
lable: a photoresistor, an accelerometer, a micro-
phone, a thermal camera, and an infrared distance 
sensor. The groups familiarized themselves with 
the given sensors by researching their functionality 
online. The objective was to determine how the 
sensor technically works, what it measures, and 
what data it outputs. The students compiled this 
information into a sensor profile and presented 
their findings to the group. 

3.1.1. First Act—Data Acquisition and Training Phase
The two actors were then asked to play a scene. 
The aim was to reenact a simple, everyday situa-
tion in which sensor data can be used to conclude 
certain events. In this case, the instructors chose 
an office situation in which the students had to 
analyze whether a person was working. One person 
was asked to sit on a chair in front of a screen and 
operate a mouse and keyboard. The other actor 

played a colleague who would later enter the room. 
A different situation could have been chosen; this 
point is further addressed in the discussion. In the 
first act, the scene was performed by only one per-
son. The actor was briefed in advance to perform 
obvious gestures such as typing on the keyboard, 
getting up from the chair, or leaving the room.

Data Acquisition: The groups of „intelligent sys-
tems“ observed the scene and were asked to con-
sider what information could be derived from the 
data of their specific sensor in order to conclude 
whether a person was working. The placement of 
the imaginary sensor in the room could be chosen 
freely. However, only one sensor could be used, and 
its position had to be maintained until the end of 
the role-playing activity. The students were then 
asked to formalize their decisions on the „sen-
sor mission sheet“ by answering questions such 
as where precisely the sensor should be placed, 
what exactly it should record, in what format, and 
when the data should be sent. For this task, it was 
important that the sensors only convey information 
in the form of data, not yet an interpretation of this 
data. On one hand, the sensor mission sheets ai-
med to reflect the significance of specific data and 
the relevance of well-thought-out data acquisition. 
On the other, it guided the human sensors in their 
later data collection process.

Training Phase: After defining the data acquisition 
process, the groups were asked to think about the 
model side of their system. They defined how they 
could interpret the data received from the sensors 
and which conclusions the algorithm could draw 
about the scene. To this end, they completed the 
model mission sheet (fig. 3), on which they defi-
ned two classes that the model should be able to 
distinguish by giving them descriptive names and 
outlining four meaningful expected data exam-
ples for each class. By completing the sheet, the 

Figure 2: Groupes and different roles assigned to the 
students for the role play.

Figure 3: The model mission sheet with data examples for 
two classes, ”typing” and ”not typing.”
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individual groups conducted something similar to 
the training process of an ML model: they agreed 
on which patterns they wanted to recognize in their 
data and which class name or event to assign to 
each pattern.

3.1.2. Second Act—Model Inference
The role play then progressed to the second act, 
model inference. This part required each group to 
apply its model to the live data from the human 
sensors and to make real-time predictions about 
the events occurring in the scene. This involved 
a technical setup, which the students realized 
together (fig. 4): The human sensors remained in 
the room with the actors and observers. The people 
representing the algorithm moved to another room. 
The human sensors were then each given a roll of 
paper on which they were to continuously docu-
ment their data stream. Using a webcam and a 
video conferencing tool, a live data stream video 
was transmitted to the respective algorithm team, 
which received this stream in the next room. Using 
a group chat as a communication platform, they 
communicated their predictions (i.e., the conclusi-
ons drawn from the data they received about pos-
sible events in the scene) by posting the respective 
class names when recognized. The observers in 
the main room should follow the prediction stream 
in the group chat and compare it with the events 
happening in the scene. This allows them to later 
give feedback to the teams on correct and incorrect 
predictions.

To prevent the groups from overly familiarizing 
themselves with the data and the expected events 
in advance, the sensor and mission sheets were 
swapped among the groups (i.e., each group was 
assigned a sensor or model mission they had not 
planned themselves). Parallels were made with 
overfitting, in which a model adapts too strongly to 
the training data and can no longer correctly inter-

pret unknown data. In a second briefing, the actors 
were instructed to play a slightly more complex 
scene and to incorporate actions that the teams had 
not yet seen in the training run-through (e.g., the 
second person should now enter the room through 
the door, or the two people should interact with each 
other).

After the technical setup, the starting signal was 
given for the second act: The actors played the 
scene, the human sensors recorded their data (fig. 
5), and the data stream was transmitted via video 
to their algorithm team in the next room. This team 
interpreted the data and sent its predictions to the 
observer team via group chat. The latter compared 
the predictions with the reality of the scene being 
played.

3.1.3. Third Act—Model Inference with Sensor Fusion
After the second act, the participants reconvened. 
The algorithm groups reported on their experien-
ces, including the quality of the sensor data they 
had received, what they could deduce from the 
data, where they needed clarification, or what had 
not worked so well. The observers also shared their 
experiences about which events were reliably iden-
tified, mislabeled, or not recognized. The findings 

Figure 4: Technical setup and procedure of the role play 
in the second act.

Figure 5: ”Human sensors” recording data in various data formats such as graphs, numbers, and color-coded  
temperature ranges.
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from the discussion should help the groups improve 
their predictions in the next step; in other words, 
it serves as a further training phase. The systems 
were also allowed to recalibrate their human sen-
sors by adjusting the transmission rate or threshold 
values. An insight that the students gained from 
this task is that it is often not possible to draw 
accurate conclusions about certain events with 
simple sensor data (e.g., the absence of keystrokes 
could mean that a person is not working, but they 
could also be reading something on the screen; 
opening the door could mean one person is leaving 
the room or that a second person is entering).
Based on these learnings, the concept of sensor 
fusion was introduced in the third act: The actors 
performed a similar scene as before, and the indivi-
dual groups used their improved systems to predict 
the events happening in the scene. The difference 
from the second act was that the algorithm groups 
could now exchange information while making 
predictions. This allowed information from different 
sensors to be combined and much more precise 
predictions to be made based on the merged data. 
The bundled predictions were again forwarded to 
the observers via group chat.

3.1.4. Final Group Discussion—Recapitulating  
the Learnings
After the final act, all participants met again. We 
discussed what had been learned from the ex-
perience and put it into the context of ML. For 
instance, by realizing that it was possible to make 
much more precise predictions by bundling dif-
ferent sensor information, the concept of sensor 
fusion was explained. In addition, some students 
stated that gaining meaningful information from 
their sensor data was more difficult than they had 
thought. At this point, the relevance of a strategic 
and technically well-thought-out approach for the 
development and realization of AI-related use cases 
was discussed with the students.

Another issue raised was the high latency between 
an event happening in the scene and the prediction 
being received via group chat, which made it parti-
cularly difficult for the observers to evaluate the per-
formance of the models. At this point, the implicati-
ons of latency and inference speed were discussed. 
One group reported it could not interpret its sensor 
data in the first act as it was sent in a completely dif-
ferent format than that noted on the mission sheet. 
Even though the group members comprehended the 
data with their human understanding, they precisely 
followed the instructions on the mission sheet and 
had to accept the run as a failure. Through this expe-

rience, the students learned about potential sources 
of error in the training or inference process.
The first part of the workshop concluded with a 
short lecture covering the basics of ML, in which 
the fundamentals of neural networks and their 
operating principles were discussed. These inclu-
ded topics such as the structure of a neural net-
work consisting of input, hidden, and output layers; 
different types of data as input (e.g., pixel data for 
images or time series data); the significance of 
labeled data in supervised learning; the concept of 
classification and the basics of training; and intro-
ducing concepts such as weights, backpropagation, 
and training cycles. Parallels to the role play were 
emphasized at the relevant points.

3.2. Workshop Part 2: Hands-on Exploration  
of Technology as Design Material
The second part of the workshop focused on a 
playful exploration of the technology and its poten-
tial for designing new forms of AI-based inter-
actions. To this end, the students were provided 
with the necessary hardware and software skills 
to train an ML model with their data. This involved 
acquiring, preparing, and processing sensor data; 
training and improving the model; and deploying 
the model on a microcontroller.

In this part of the workshop, we entered the field 
of tiny machine learning (TinyML), that is, exe-
cuting ML model inference directly on microcon-
trollers and thus performing on-device analyses 
for different sensing modalities [12]. The advan-
tages of such local data processing are low power 
consumption (often battery-operated), increased 
data privacy and security (as the raw data is kept 
locally), low latency, and increased reliability (due 
to the independence of networks, remote servers, 
or services). The complexity and technical depth of 
the technology presented particular challenges for 
implementing this part of the workshop. Speci-
fically, the design of the course and the provided 
material were influenced by the following factors:

•	 Participants often have little or no prior knowled-
ge of programming, ML, and electronics.

•	 Despite the use of software tools, higher-level 
programming languages, and frameworks, the 
ML training process remains complex and tech-
nically demanding, especially the subsequent 
deployment of the model.

•	 A wide range of data types (e.g., image, audio, 
movement), sensor types (digital, analog, single/
multidimensional), processors, and boards are 
available.
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•	 Participants use their own computers to compile 
the code and transfer it to the microcontrollers. 
As this involves a variety of models and opera-
ting systems, there is a high potential for incom-
patibilities and errors.

•	 To not hinder the creative process, participants 
should be able to move freely without being tied 
to a power source.

•	 To speed the development process, examining 
sensor data and testing the model‘s performance 
on the microcontroller in real time should be 
possible. For that, a display is required.

3.2.1. Project Briefing
To leave enough freedom for exploration and ex-
perimentation and provide an overarching project 
briefing, the goal of the second part of the work-
shop was inspired by the famous yet usually com-
pletely analog Rube Goldberg machine [10,18]. The 
aim was to create a chain reaction of TinyML-based 
classifiers that detect an input, such as specific 
properties or patterns of change in the physical en-
vironment, and, on detecting the pattern, trigger an 
output (actuator) that initiates the next element in 
the chain and so on. By linking readymade sensing 
and acting modules, the students should create a 
group-spanning chain reaction to be demonstrated 
in a performance at the end of the workshop.

Given the short duration of the workshop and the 
technical challenges, we decided to use an on-
line service for data acquisition, model training, 
and deployment and to develop a modular toolkit 
of readymade sensing and acting modules. Using 
a simple, consistent, and visible interface among 
these modules (a red and a green LED triggered by 
the sensing module and a light sensor read by the 
acting module), we ensured the individual projects 
could be linked together as required. This allowed 
participants to focus on designing their individual 
systems by iteratively exploring the given sensor, its 
data, its potential for creating novel forms of inter-
action, and the resulting model.

3.2.2. Online ML Service
We used Edge Impulse (EI) [26], a software-as-
a-service tool that guides users through the ML 
process in a browser without the need for specia-
lized hardware or software to be installed on their 
machines. It radically simplifies collecting and edit-
ing data, organizing and labeling the data, building 
a model architecture, and performing the actual 
training process in a visual and guided way (fig. 
6). It also offers a certain degree of access to the 
hyperparameters and reveals the essential steps 

in the training process. Other available tools hide 
these steps from the user in favor of simplification, 
thus offering fewer opportunities for individual 
control over the process. Furthermore, EI provides 
an optimized TinyML TensorFlow-lite [27] model as 
an easy-to-install Arduino library. The EI data for-
warder was used to transfer the data to the server 
via a computer‘s serial port.

3.2.3. Introducing the Modular Acting and Sensing 
Toolkit
The toolkit we prepared for the workshop contains 
two types of modules: the sensing module and the 
acting module, as shown in figure 7. Both modules 
consist of a) the microcontroller board, b) a sensor 
or an actor, c) a power bank for power supply for 
several hours, d) a prototyping board that allows 
connecting both types of modules, and e) the inter-
face with a red and green LED on the sensing side 
using light to transmit the inference result to the 
photoresistors on the acting side.

The core component of each module is an M5-
StickC PLUS [28] microcontroller based on an 
ESP32 chip. It is relatively inexpensive, comes 
with some sensors on board, has an ecosystem of 
external sensors/actuators including libraries, a 
small battery for quick experiments, and a dis-
play, as shown in figure 8. We provided prewritten 

Figure 6: The visual and guided process of data acquisi-
tion (left) and model training (right) using the EI online 
service.

Figure 7: Schematic representation of the sensing and 
acting modules, which communicate with each other via 
a simple LED-based interface.
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code to stream the sensor data via a serial port to 
a computer and from there to EI, as well as to run 
the resulting model and display some information 
on the screen. Hence, the participants only had to 
change the parameters for their projects.

In the workshop, the Arduino IDE [29] was used 
for editing, compiling, and flashing code for the 
modules. It is easy to install and navigate, sup-
ports many boards, and provides all the necessary 
libraries, board information, and their interfaces 
for external hardware directly or via plug-ins. In 
contrast to the programming of more complex 
systems such as minicomputers, it is deliberately 
designed for beginners. However, due to the variety 
of operating systems and USB hardware, unex-
pected problems and errors may occur that cannot 
be solved spontaneously during the workshop. We 
proactively addressed this problem by providing 
participants with a specially prepared Raspberry 
Pi system (with all necessary dependencies) to be 
used as a compile and upload tool in case of errors 
with their hardware. With networking capabilities 
and responsive remote access, the system can be 
used from any laptop, regardless of the operating 
system or specifications. It allows custom models 
downloaded from EI to be integrated into code, 
compiled, and uploaded to the microcontroller of 
the respective module. This approach was a reliable 
fallback and ensured that technical obstacles did 

not impede the workshop‘s progress. A system that 
enables remote editing and compilation and subse-
quent over-the-air (OTA) upload to microcontrollers 
via a local network or even the internet would be 
even more preferable.

3.2.4. Procedure
Before starting the hands-on activities of the 
second workshop part, a brief introduction was 
given on the basics and terminology of TinyML, 
microcontrollers as hardware, and the Arduino C++ 
code as software to be used. The objectives of the 
second part of the workshop included: 1) exploring 
the data of a given sensor and using it in the Edge 
Impulse workflow, 2) designing interesting interac-
tions and training the corresponding classification 
model, and 3) Refining the model and creating an 
interactive physical artifact to be integrated into 
the group performance.

The students worked in groups of two, with each 
group using a different sensing module, including 
an inertial measurement unit (IMU), which com-
bines acceleration, gyroscope, and magnetometer 
data; a microphone; a thermal imaging camera; an 
infrared distance sensor; and a camera. Regarding 
the acting modules, the students had to be creative 
and develop individual solutions. The acting boards 
were primarily equipped with basic components 
such as radio modules for controlling radio-con-

Figure 8: The M5-StickC PLUS microcontroller (left) and the readymade acting and sensing modules (center and right).

Figure 9: The presentation-ready Rube Goldberg machine performance (left) with exponents detecting hidden temperatu-
re patterns in a bunch of cables (center) or visual patterns of audio frequencies (right).
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trolled sockets, relays, or servo motors for simple 
movements.

The result was a largely functional Rube Goldberg 
machine, as seen in figure 9 (left), and in a video on 
the project repository https://gitlab.rlp.net/kitegg/
public/making-nonsense. Further documentation 
material and the code written for the individual 
modules can also be found there. Innovative forms 
of interaction created by the students were, for 
example, the detection of visual patterns of au-
dio frequencies in vibrating sand using a camera 
module (fig. 9, right) and the detection of hidden 
patterns in a bunch of cables based on temperatu-
re change that can only be detected by a thermal 
camera (fig. 9, center).

3.3. Workshop Evaluation
During the second implementation of the teaching 
format, we conducted an evaluation, which was 
completed by five of the eight participants. In the 
field of skills acquisition, four people fully agreed 
with the statement that their knowledge of AI had 
been expanded as a result of the course. One per-
son slightly agreed. Four people also fully agreed 
with the statement that the format had improved 
their basic understanding of AI. One person slightly 
agreed with the statement. Four people stated that 
the tasks set in the course were appropriate, while 
one person found the tasks rather difficult.
Regarding personal development, students were 
asked whether they felt more confident in dealing 
with the topic of AI after the course. One person 
fully agreed, three slightly agreed, and one answe-
red neutrally. Four people fully agreed that they had 
gained new ideas and inspiration from the course, 
while one slightly agreed.
Due to the small number of participants, the eva-
luation can only provide an initial impression of the 
student‘s perception of the format. If the format 
is carried out again, a larger evaluation with more 
participants should be sought.

4. Discussion
In line with related literature [6,8,9,13,17,20], and 
the goal of equipping the students with the ne-
cessary intuition for AI technologies, our teaching 
format pursued the following learning objectives: 1) 
to increase technical literacy by equipping students 
with the necessary intuition for AI technologies, 
which includes the understanding of data; 2) 
teaching the relevant technical language to enable 
students to work in cross-disciplinary teams with 
AI experts and data scientists; and 3) providing 
them with tools and knowledge to engage with the 

technology as a design material to support ideation 
and enable prototyping and testing ideas.

The first part of the workshop focused on a playful 
and low-threshold introduction to the technical 
capabilities and limitations of the technology, thus 
contributing to increasing technical literacy and 
conveying precise language. We observed that 
the role-playing method led to the students‘ very 
engaged involvement. Without being asked to, 
some students even presented the results of their 
research into the functionality of their sensors in 
the form of a role play. We uncovered and ad-
dressed many ML-relevant topics during the role 
play, including different data types; pitfalls in data 
acquisition, processing, and interpretation; latency; 
and sensor fusion. In the short technical lecture 
following the role play, the students were engaged 
and able to ask specific questions based on their 
prior learning. The evaluation results underline that 
the students were able to expand their (technical) 
AI knowledge through the workshop. The chosen 
use case (determining whether a person is working) 
worked well from a technical point of view but is 
questionable from a moral perspective. We hope 
that others will develop more suitable use cases 
and share them. The role of the observers could 
also be improved. In some cases, the observers 
were relatively uninvolved in what was happening, 
and the findings from the observations were limi-
ted. It would perhaps be better not to assign the 
role permanently but to have one person from the 
algorithm teams perform the task in rotation. Alter-
natively, the observers‘ task could be expanded and 
thus made more attractive.

The second part of the workshop focused on acti-
vely engaging with technology as a design material 
to facilitate creative processes. The explorative 
approach should also promote knowledge about 
the material‘s capabilities and, thus, technical 
literacy. In addition, it should impart data experti-
se and expand the technical language. During the 
workshop implementation, we observed that the 
students developed the necessary understanding 
of data and (Tiny)ML and learned the necessary 
terminology to handle the EI ML process. Despite 
the limited time, they managed to train and deploy 
their models and embed them in an essentially 
functioning and presentation-ready Rube Goldberg 
machine performance. The resulting interactions 
were creative and explorative, far beyond extrapo-
lating known use cases. The high time expenditure 
and the nonlinearity of the training process were 
vividly conveyed in practice. Although this led to 
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some frustration for individual students, embracing 
complexity is a critical learning process for develo-
ping AI-based systems. This point also underlines 
a relevant learning in the context of AI intuition: 
being able to evaluate the computational costs and 
their appropriateness in relation to a given design 
goal to make a conscious decision for or against AI 
technologies [8]. In this context, one student com-
mented: „Many of our experimental setups could 
have been realized without AI. Although I thought a 
lot about where I could effectively integrate AI into 
a simple experiment, in the end, we built a setup 
that could theoretically be realized without it.“

Using our modular sensing and acting toolkit and 
the readymade code drastically simplified the tech-
nical complexity of the workshop setup. It enabled 
the students to engage hands-on with the techno-
logy with little prior hardware and code knowledge. 
This aspect was confirmed by student feedback, as 
one person stated: „I liked the fact that the material 
was prepared ‚just enough‘ so that I could figure 
out the rest myself and save time for other things 
that would have taken me too long.“ The evaluation 
underlines that the students were able to gain new 
ideas and inspiration regarding AI by engaging with 
the technology. 

Nevertheless, we faced some challenges in the 
technical implementation: much time was spent 
installing software and debugging, and there was 
downtime at EI during the workshop. Using a free 
online service for training also slowed the ability to 
iterate fast due to queuing times when the server 
was under a heavy load. Furthermore, a disadvan-
tage of the readymade modules is that participants 
have difficulty repeating what they have learned if 
they do not have the modules.

We conducted the workshop in a one-week conse-
cutive format. However, our proposal constitutes 
a teaching concept rather than a specific course 
unit. The two parts of the workshop can easily 
be separated in time and implemented in other 
teaching formats (e.g., consecutively over several 
weeks). The first part of the workshop (section 
3.1: Acting out AI Systems) offers a playful and 
relatively concise (approx. 4 hours) introduction 
to the technical capabilities and limitations of the 
technology. Therefore, this first workshop part 
can be used as a kick-off for studio courses and 
semester-long projects, whereby the second part of 
the workshop (section 3.2: Hands-on Exploration of 
Technology as Design Material) can be modified by 
providing a project-related briefing. The technical 

components and the code can be easily adapted for 
this purpose.

Given a short time frame (e.g., only one day), the 
workshop could be conducted with a more tech-
nical focus. It could be kicked off with the „acting 
out AI systems“ part in the morning, while in the 
afternoon an introduction to the online ML service 
could be given including space for hands-on ex-
ploration. Within this time, participants could train 
a simple model for a simple use case (e.g., code 
word recognition or recognizing a specific gesture). 
In this case, however, exploring the technology as a 
design material would fall short.

5. Conclusion
With our teaching format, we contribute to the goal 
of equipping design students with the necessary 
intuition for AI technologies that would prepare 
them to create meaningful, creative, and technically 
feasible AI-based systems and user experiences 
[8]. Our format aimed to 1) create a playful, low-
threshold introduction to the basics of ML for the 
classification of sensor data and 2) enable students 
to explore the technology as creative material 
through hands-on engagement.

Reflecting on our approach, we conclude that our 
teaching format has met our overarching learning 
objectives. Nevertheless, it leaves room for impro-
vement. We encourage other educators to apply 
our approach, adapt it to their requirements, and 
develop it further.
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